Topological Games of Bounded Selections

Leandro F. Aurichi¹ Matheus Duzi²

¹ICMC - USP (Brazil) aurichi@icmc.usp.br

²ICMC - USP (Brazil) matheus.duzi.costa@usp.br

Winter School, 2019

¹Supported by FAPESP (2017/09252-3) ²Supported by FAPESP (2017/09797-0)

Aurichi, Duzi

Topological Games of Bounded Selections

Table of Contents

Classical Games

2 The new variation

3 Tightness case

4 Covering case

Aurichi, Duzi Topological Games of Bounded Selections

→ < Ξ → <</p>

-

Table of Contents

Classical Games

2 The new variation

3 Tightness case

4 Covering case

Aurichi, Duzi Topological Games of Bounded Selections

(日)

Definition

Let \mathcal{A}, \mathcal{B} be families of sets and $k \in \mathbb{N}$. We denote by $G_k(\mathcal{A}, \mathcal{B})$ the following game played between ALICE and BOB.

- In each inning $n \in \omega$ ALICE chooses $A_n \in \mathcal{A}$ and BOB responds with $B_n \subset A_n$ such that $|B_n| \leq k$.
- We then say that BOB wins if $\bigcup_{n \in \omega} B_n \in \mathcal{B}$ and that ALICE wins otherwise.

▶ < ∃ ▶</p>

Definition

Let \mathcal{A}, \mathcal{B} be families of sets and $k \in \mathbb{N}$. We denote by $G_k(\mathcal{A}, \mathcal{B})$ the following game played between ALICE and BOB.

- In each inning $n \in \omega$ ALICE chooses $A_n \in \mathcal{A}$ and BOB responds with $B_n \subset A_n$ such that $|B_n| \leq k$.
- We then say that BOB wins if $\bigcup_{n \in \omega} B_n \in \mathcal{B}$ and that ALICE wins otherwise.

Definition

Let \mathcal{A}, \mathcal{B} be families of sets. We denote by $G_{\mathrm{fin}}(\mathcal{A}, \mathcal{B})$ the following game played between ALICE and BOB.

- In each inning $n \in \omega$ ALICE chooses $A_n \in \mathcal{A}$ and BOB responds with $B_n \subset A_n$ finite.
- We then say that BOB wins if $\bigcup_{n \in \omega} B_n \in \mathcal{B}$ and that ALICE wins otherwise.

Example

Given a space (X, τ) , let

$$\mathcal{A} = \mathcal{B} = \mathcal{O} = \left\{ \mathcal{U} \subset \tau : X = \bigcup \mathcal{U} \right\}$$
 (covering games)

æ

Example

Given a space (X, τ) , let

$$\mathcal{A} = \mathcal{B} = \mathcal{O} = \left\{ \mathcal{U} \subset \tau : X = \bigcup \mathcal{U}
ight\}$$
 (covering games)

Example

Given a space (X, τ) and $p \in X$, let

 $\mathcal{A} = \mathcal{B} = \Omega_{p} = \left\{ A \subset X : p \in \overline{A} \right\} \text{(tightness games)}$

э

Definition

A **strategy** for PLAYER is a function whose input is the history of the game up to a given PLAYER's turn and output is a valid response of PLAYER to that history.

▲□ ► < □ ► </p>

Definition

A **strategy** for PLAYER is a function whose input is the history of the game up to a given PLAYER's turn and output is a valid response of PLAYER to that history.

Notation:

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

A **strategy** for PLAYER is a function whose input is the history of the game up to a given PLAYER's turn and output is a valid response of PLAYER to that history.

Notation:

"PLAYER $\uparrow G$ " = "PLAYER has a **winning** strategy in G"

・ 同 ト ・ ヨ ト ・ ヨ

Definition

A **strategy** for PLAYER is a function whose input is the history of the game up to a given PLAYER's turn and output is a valid response of PLAYER to that history.

Notation:

"PLAYER $\uparrow G$ " = "PLAYER has a winning strategy in G" "PLAYER $\uparrow G$ " = "PLAYER has **no** winning strategy in G"

▲ □ ▶ ▲ □ ▶ ▲

Definition

A **strategy** for PLAYER is a function whose input is the history of the game up to a given PLAYER's turn and output is a valid response of PLAYER to that history.

Notation:

"PLAYER $\uparrow G$ " = "PLAYER has a **winning** strategy in G" "PLAYER $\uparrow G$ " = "PLAYER has **no** winning strategy in G"

Definition

Two games G_1 and G_2 are **equivalent** if

```
\operatorname{ALICE} \uparrow \mathsf{G}_1 \iff \operatorname{ALICE} \uparrow \mathsf{G}_2
```

```
\operatorname{BoB} \uparrow \mathsf{G}_1 \iff \operatorname{BoB} \uparrow \mathsf{G}_2
```

Table of Contents

Classical Games

2 The new variation

3 Tightness case

4 Covering case

Aurichi, Duzi Topological Games of Bounded Selections

(日)

Definition

Let \mathcal{A}, \mathcal{B} be families of sets. We denote by $G_{bnd}(\mathcal{A}, \mathcal{B})$ the following game played between ALICE and BOB. In each inning $n \in \omega$ ALICE chooses $A_n \in \mathcal{A}$ and BOB responds with $B_n \subset A_n$ finite. We then say that BOB wins if:

• There is a $k \in \mathbb{N}$ such that $|B_n| \leq k$ for every $n \in \omega$;

•
$$\bigcup_{n\in\omega} B_n\in\mathcal{B}$$
,

and that $\ensuremath{\operatorname{ALICE}}$ wins otherwise.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Table of Contents

Classical Games

The new variation

3 Tightness case

4 Covering case

Aurichi, Duzi Topological Games of Bounded Selections

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

ALICE $\uparrow G_{bnd}(\Omega_p, \Omega_p)$ if, and only if, ALICE $\uparrow G_k(\Omega_p, \Omega_p)$ for every $k \in \mathbb{N}$.

э

(日)

Theorem

ALICE $\uparrow G_{bnd}(\Omega_p, \Omega_p)$ if, and only if, ALICE $\uparrow G_k(\Omega_p, \Omega_p)$ for every $k \in \mathbb{N}$.

Therefore, $G_{bnd}(\Omega_{\rho}, \Omega_{\rho})$ is **not** equivalent to $G_{fin}(\Omega_{\rho}, \Omega_{\rho})$:

Theorem

ALICE $\uparrow G_{bnd}(\Omega_p, \Omega_p)$ if, and only if, ALICE $\uparrow G_k(\Omega_p, \Omega_p)$ for every $k \in \mathbb{N}$.

Therefore, $G_{bnd}(\Omega_{\rho}, \Omega_{\rho})$ is **not** equivalent to $G_{fin}(\Omega_{\rho}, \Omega_{\rho})$:

Proposition

Over C_p(ℝ):
(a) BOB↑G_{fin}(Ω₀, Ω₀) (D. Barman, A. Dow (2011));
(b) ALICE↑G_k(Ω₀, Ω₀) for every k ∈ N (M. Sakai (1988)).

Theorem

$\begin{array}{l} \operatorname{BoB} \uparrow {\sf G}_{\operatorname{bnd}}(\Omega_{p},\Omega_{p}) \text{ if, and only if, there is an } m \in \mathbb{N} \text{ such that} \\ \operatorname{BoB} \uparrow {\sf G}_{\operatorname{m}}(\Omega_{p},\Omega_{p}). \end{array} \end{array}$

イロト イヨト イヨト

э

Theorem

BOB $\uparrow G_{bnd}(\Omega_p, \Omega_p)$ if, and only if, there is an $m \in \mathbb{N}$ such that BOB $\uparrow G_m(\Omega_p, \Omega_p)$.

Therefore, $G_{bnd}(\Omega_p, \Omega_p)$ is also **not** equivalent to $G_k(\Omega_p, \Omega_p)$ for any $k \in \mathbb{N}$:

イロト イボト イヨト イヨト

Theorem

BOB $\uparrow G_{bnd}(\Omega_p, \Omega_p)$ if, and only if, there is an $m \in \mathbb{N}$ such that BOB $\uparrow G_m(\Omega_p, \Omega_p)$.

Therefore, $G_{bnd}(\Omega_p, \Omega_p)$ is also **not** equivalent to $G_k(\Omega_p, \Omega_p)$ for any $k \in \mathbb{N}$:

Proposition (L. Aurichi, A. Bella, R. Dias (2018))

For each $k \in \mathbb{N}$ there is a countable space X_k with only one non-isolated point p_k on which $\operatorname{ALICE} \uparrow G_k(\Omega_{p_k}, \Omega_{p_k})$ and $\operatorname{BOB} \uparrow G_{k+1}(\Omega_{p_k}, \Omega_{p_k})$.

< ロ > < 同 > < 回 > < 回 > .

Table of Contents

Classical Games

The new variation

3 Tightness case

Aurichi, Duzi Topological Games of Bounded Selections

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition

 $\begin{array}{l} \operatorname{BOB} \uparrow {\sf G}_{\operatorname{bnd}}(\mathcal{O},\mathcal{O}) \text{ over every compact space, but} \\ \operatorname{ALICE} \uparrow {\sf G}_k(\mathcal{O},\mathcal{O}) \text{ over } 2^\omega \text{ for every } k \in \mathbb{N}. \\ \text{Moreover, } \operatorname{BOB} \uparrow {\sf G}_{\operatorname{fin}}(\mathcal{O},\mathcal{O}) \text{ over every } \sigma\text{-compact space, but} \\ \operatorname{ALICE} \uparrow {\sf G}_{\operatorname{bnd}}(\mathcal{O},\mathcal{O}) \text{ over } \mathbb{R}. \end{array}$

< ロ > < 同 > < 回 > < 回 > .

The following game is very useful to understand $G_{bnd}(\mathcal{O}, \mathcal{O})$:

Definition

Let $k \in \mathbb{N}$, and \mathcal{A}, \mathcal{B} be families of sets. We denote by $G_k(\mathcal{A}, \mathcal{B}) \mod 1$ the following game, played between ALICE and BOB.

- in the first inning, ALICE chooses $A_0 \in A$ and BOB responds with $B_0 \subset A_0$ finite;
- ② in every inning $n \in \omega$ after that, ALICE chooses $A_n \in A$ and BOB responds with $B_n \subset A_n$ such that $|B_n| \leq k$.

We then say that BOB wins if $\bigcup_{n \in \omega} B_n \in \mathcal{B}$ and that ALICE wins otherwise.

Theorem

Over every space X,

 $\operatorname{ALICE} \uparrow \mathsf{G}_{\operatorname{bnd}}(\mathcal{O},\mathcal{O}) \iff \operatorname{ALICE} \uparrow \mathsf{G}_1(\mathcal{O},\mathcal{O}) \operatorname{\mathsf{mod}} 1.$

Moreover, if X is a Hausdorff space, then

 $\operatorname{BoB} \uparrow \mathsf{G}_{\operatorname{bnd}}(\mathcal{O}, \mathcal{O}) \iff \operatorname{BoB} \uparrow \mathsf{G}_1(\mathcal{O}, \mathcal{O}) \operatorname{\mathsf{mod}} 1.$

Proof uses

Theorem (L. Crone, L. Fishman, N. Hiers and S. Jackson (2018))

Let X be a space and $k \in \mathbb{N}$. Then

 $\operatorname{ALICE} \uparrow {\sf G}_1(\mathcal{O},\mathcal{O}) \iff \operatorname{ALICE} \uparrow {\sf G}_k(\mathcal{O},\mathcal{O}).$

Moreover, if X is a Hausdorff space, then

 $\operatorname{Bob}\!\uparrow\!\mathsf{G}_1(\mathcal{O},\mathcal{O})\iff\operatorname{Bob}\!\uparrow\!\mathsf{G}_k(\mathcal{O},\mathcal{O}).$

イロト イポト イヨト イヨト

Theorem

Let X be a regular space. Then $BOB \uparrow G_1(\mathcal{O}, \mathcal{O}) \mod 1$ if, and only if, there is a compact set $K \subset X$ such that, for every open set $V \supset K$, $BOB \uparrow G_1(\mathcal{O}, \mathcal{O})$ over $X \setminus V$.

Theorem

Let X be a regular space. Then $BOB \uparrow G_1(\mathcal{O}, \mathcal{O}) \mod 1$ if, and only if, there is a compact set $K \subset X$ such that, for every open set $V \supset K$, $BOB \uparrow G_1(\mathcal{O}, \mathcal{O})$ over $X \setminus V$.

Corollary

Let X be a regular space. Then $\operatorname{BOB} \uparrow G_{\operatorname{bnd}}(\mathcal{O}, \mathcal{O})$ if, and only if, there is a compact set $K \subset X$ such that, for every open set $V \supset K$, $\operatorname{BOB} \uparrow G_1(\mathcal{O}, \mathcal{O})$ over $X \setminus V$.

And we can characterize even stricter subsets of metrizable spaces:

Theorem (R. Telgársky (1975), F. Galvin (1978))

Let X be a space in which every point is a G_{δ} set. Then BOB \uparrow $G_1(\mathcal{O}, \mathcal{O})$ if, and only if, X is countable.

- 4 同 1 4 三 1 4 三 1

And we can characterize even stricter subsets of metrizable spaces:

Theorem (R. Telgársky (1975), F. Galvin (1978))

Let X be a space in which every point is a G_{δ} set. Then BOB \uparrow $G_1(\mathcal{O}, \mathcal{O})$ if, and only if, X is countable.

Corollary

Let X be a regular space in which every compact set is a G_{δ} set (e.g., a metrizable space). Then $\operatorname{BOB} \uparrow \operatorname{G}_{\operatorname{bnd}}(\mathcal{O}, \mathcal{O})$ if, and only if, there is a compact set $K \subset X$ and a countable set $N \subset X$ such that $X = K \cup N$.

- 4 周 ト 4 戸 ト 4 戸 ト

References

- L. F. Aurichi, A. Bella, and R. R. Dias. Tightness games with bounded finite selections. *Israel Journal of Mathematics*, 224(1):133–158, 2018.
- [2] D. Barman and A. Dow. Selective Separability and SS+. Topology Proceedings, 37:181–204, 2011.
- [3] L. Crone, L. Fishman, N. Hiers, S. Jackson, and G. N. Jan. Equivalence of the Rothberger and 2-Rothberger games for Hausdorff spaces. arXiv, (August):2–5, 2018.
- [4] F. Galvin. Indeterminacy of point-open games. *Bulletin de l'Académie Polonaise des Sciences*, 26:445–449, 1978.
- [5] M. Sakai. Property C" and function spaces. Proceedings of the American Mathematical Society, 104(3):917–919, 1988.
- [6] R. Telgársky. Spaces defined by topological games. Fund. Math., 116(3):189–207, 1983.

Děkuji!

Aurichi, Duzi Topological Games of Bounded Selections

< ロ > < 回 > < 回 > < 回 > < 回 >

æ